

Polarization measurements of the Lyman-(alpha)1 x-ray emission lines of hydrogenlike Ar17+ and Fe25+ at high electron impact energies

D. L. Robbins, P. Beiersdorfer, A. Ya. Faenov, T. A. Pikuz, D. B. Thorn, H. Chen, K. J. Reed, A. J. Smith, G. V. Brown, R. L. Kelley, C. A. Kilbouren, F. S. Porter

February 1, 2006

Physical Review A

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

Polarization measurements of the Lyman- α_1 x-ray emission lines of hydrogenlike Ar^{17+} and Fe^{25+} at high electron impact energies.

D.L. Robbins¹, P. Beiersdorfer², A. Ya. Faenov³, T.A. Pikuz³, D.B. Thorn², H. Chen², K.J. Reed², A.J. Smith¹, K. R. Boyce⁴, G. V. Brown⁴, R. L. Kelley⁴, C. A. Kilbourne⁴, and F. S. Porter⁴

¹Department of Physics, Morehouse College, Atlanta, GA 30314, USA

²University of California Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

³Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow region, 141570 Russia

⁴NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

PACS: 34.80.Kw, 32.30.Rj, 52.27.Ny

ABSTRACT

We have measured the polarization of the $2p_{3/2} \rightarrow 1s_{1/2}$ Lyman- α_1 x-ray line of hydrogenlike Ar^{17+} and Fe^{25+} at electron impact energies ranging from 7 to 25 threshold units. The highly charged argon and iron ions were produced using the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. A combination of two crystal spectrometers and a microcalorimeter were used to record the Lyman- α x-ray emission of Ar^{17+} and Fe^{25+} and to infer the polarization of the Lyman- α_1 line. Our results show a systematic discrepancy with the predictions of distorted-wave calculations.

I. INTRODUCTION

Polarization spectroscopy has the potential of being used as a plasma diagnostic tool [1,2]. Polarized x rays emitted from plasmas hint at the presence of electron beams, hence at an anisotropic electrons distribution function. This innovative diagnostic has been applied successfully to plasmas produced by lasers [3], vacuum sparks [4], electron beam ion traps [5], and Z-pinches [6,7]. Testing the accuracy of theoretical predictions in a controlled experiment is of importance for assessing the accuracy of the diagnostic. Nakamura *et al.* previously reported the polarization of the Lyman- α_1 line in hydrogenlike titanium as a function of electron impact energy [8]. Their results showed an unexplained systematic discrepancy with the predictions provided by fully relativistic distorted-wave calculations. The discrepancy between measured and predicted polarization is the catalyst for the present study. The discrepancy they found is especially intriguing because studies of the K-shell x-ray emission lines of various heliumlike and lithiumlike ions: Fe²⁴⁺, Ti²⁰⁺, Sc¹⁹⁺, Fe²³⁺, and Ti¹⁹⁺ [9-12], seem to agree well with theory. Good agreement with theory was also found in a recent measurement of heliumlike and lithiumlike sulfur [13], which was done at electron impact energies up to 60 threshold units. Moreover, measurements of the polarization of certain lines in neonlike barium appear to agree with theory [14]. A further investigation of the polarization of Lyman- α_1 lines of highly charged ions therefore appears warranted.

In this paper we report the polarization of Lyman- α_1 x-ray emission line in hydrogenlike Ar¹⁷⁺ at two electron impact energies (30 and 84 keV), as well as a measurement for hydrogenlike Fe²⁵⁺ at electron impact energies of 30 and 120 keV is also reported. Our results are compared to the results of fully relativistic distorted-wave

calculations. The predicted polarization values tend to be larger than the measured results, confirming the trend reported by Nakamura *et al.* [8] for Ti²¹⁺.

II. Measurement

The hydrogenlike argon and iron ions were produced using the Livermore SuperEBIT electron beam ion trap [15]. Neutral argon and iron atoms were introduced into the electron beam ion trap apparatus by way of a gas injector. SuperEBIT contains a quasi-mono-energetic electron beam magnetically compressed to $\sim 60~\mu m$ diameter which both radially confines and electronically excites the trapped ions. Due to the excitation by directional electron collisions, the magnetic sublevels are unevenly populated resulting in the emission of polarized x-rays.

The high-resolution crystal spectrometers we employed to measure x-ray emission are sensitive to polarization [16,17]. The intensity of the emitted x rays observed by a crystal spectrometers can be expressed as,

$$I^{observed} = I_{\parallel} R_{\parallel} + I_{\perp} R_{\perp} \tag{1},$$

where I_{\parallel} and I_{\perp} denote intensity of the radiation emitted parallel and perpendicular to the electron beam propagation, respectively. R_{\parallel} and R_{\perp} represent the integrated crystal reflectivities for x-ray emission polarized parallel and perpendicular to the plane of dispersion, respectively. Integrated crystal reflectivities are usually tabulated as the ratio $\mathbf{R} = R_{\parallel} / R_{\perp}$. For a perfect crystal the integrated reflectivity ratio varies as a function of $\left|\cos(2\theta_{\scriptscriptstyle B})\right|$, while that of a mosaic crystal varies as a function of $\cos^2(2\theta_{\scriptscriptstyle B})$, where $\theta_{\scriptscriptstyle B}$ denotes the Bragg angle [18].

All of the spectrometers and detectors used to record x-ray emission lines from the Livermore EBIT are placed at an observation angle 90° relative to the electron beam. The polarization at this angle is defined as,

$$P \equiv \frac{I_{\parallel} - I_{\perp}}{I_{\parallel} + I_{\perp}} \quad (2).$$

By proper selection of the crystal we can use a crystal spectrometer to infer the polarization of a particular x-ray emission line. When measuring the polarization of Lyman- α_1 in hydrogenlike Fe²⁵⁺ we used a crystal spectrometer arranged in the von Hámos geometry [16] concurrently with a high-resolution x-ray spectrometer (XRS) microcalorimeter [19]. The von Hámos-type crystal spectrometer was equipped with a Si(400) crystal, which had a 2d spacing of 2.715 Å, resulting in a Bragg angle of θ_B = 40.91° for the transition of interest. The dispersion plane of the von Hámos-type crystal spectrometer was perpendicular to the electron beam propagation. Si(400) is a perfect crystal, and its integrated crystal reflectivity ratio varies as $|\cos(2\theta_a)|$. At the Bragg angle of the measurement, $\mathbf{R}_{\text{Si400}}$ is ~ 0.13. Therefore, the von Hámos crystal spectrometer preferentially reflects the \mathbf{I}_{\parallel} component in Eq. (1) while absorbing most of \mathbf{I}_{\perp} . On the other hand, the XRS microcalorimeter records both polarization components with equal (approximately unity) quantum efficiency. The intensity observed by the XRS can be approximated as,

$$I_{XRS}^{Observed} = I_{\parallel} + I_{\perp}$$
 (3).

The XRS has a resolution of ~ 8 eV compared to ~ 1.3 eV for the von Hámos crystal spectrometer. Both instruments thus resolve Lyman- α_1 and Lyman- α_2 in hydrogenlike Fe²⁵⁺, which are separated by ~ 21 eV. Figures 1 and 2 show the spectra obtained by both

the XRS and the von Hámos crystal spectrometer for the hydrogenlike Fe^{25+} Lyman- α emission at the two energies of our study.

The Lyman- α_2 transition $(2p_{1/2} \rightarrow 1s_{1/2})$ observed at 6952 eV is intrinsically unpolarized, and is thus used here for cross-normalization between the two instruments. Applying this normalization with some algebraic manipulation of Equations 1 – 3, we can derived an expression for the polarization of Lyman- α_1 ,

$$P_{L_{y-\alpha 1}} = \frac{(R+1)}{(R-1)} \frac{\left(\left(\frac{I_{L_{y-\alpha 1}}}{I_{L_{y-\alpha 2}}} \right)_{XRS} - \left(\frac{I_{L_{y-\alpha 1}}}{I_{L_{y-\alpha 2}}} \right)_{VH} \right)}{\left(\frac{I_{L_{y-\alpha 1}}}{I_{L_{y-\alpha 2}}} \right)_{XRS}}$$
(4),

where **R** denotes the integrated reflectivity ratio for Si(400) and $\left(\frac{I_{Ly-\alpha_1}}{I_{Ly-\alpha_2}}\right)$ is the measured line intensity ratio observed by either the XRS or the von Hámos crystal spectrometer. Equation 4 is the result of applying the "two –crystal spectrometer technique" to infer the polarization of x-ray line emission [9,13].

Given the simplicity of the hydrogenlike Lyman- α spectrum, the combination of spectral data provided by a crystal spectrometer and "good" theoretical predictions of the total effective excitation cross sections for Lyman- α_1 and Lyman- α_2 should be sufficient to infer the polarization of Lyman- α_1 . This technique, dubbed here as the "one-crystal method", was used in Ref. [8] to infer the polarization of Lyman- α_1 in Ti²¹⁺. This technique is also employed here, and it appears to give the same answer as the two-crystal spectrometer technique. The equation used to infer the polarization using the one-crystal method is,

$$P_{Lyman-\alpha 1} = \frac{3 - 3R - 3\left[\left(1 + R\right)\frac{\mathbf{I}^{measured}}{\mathbf{I}^{theory}}\right]}{-\frac{\mathbf{I}^{measured}}{\mathbf{I}^{theory}} - 3 + 3R} \tag{5}.$$

Equation (5) is equivalent to Eq. (7) in Ref. [8], where R, $I^{measured}$, and I^{theory} denote the integrated crystal reflectivity ratio, ratio of the measured intensity of Lyman- α_1 to Lyman- α_2 ($I^{Ly-\alpha_1}/I^{Ly-\alpha_2}$), and the ratio of the effective excitation cross sections of Lyman- α_1 to Lyman- α_2 ($\langle \sigma^{Ly-\alpha_1} \rangle / \langle \sigma^{Ly-\alpha_2} \rangle$), respectively.

For hydrogenlike Ar^{17+} , Lyman- α_1 and Lyman- α_2 are separated by only 4 eV. Hence, the XRS cannot resolve these two transitions, therefore only one crystal spectrometer is used here to infer the polarization of Lyman- α_1 for Ar¹⁷⁺. For the lower energy measurement taken at 30 keV, we employed a compact spherical crystal spectrometer arranged in the Johann geometry [17]. The measured spectrum is shown in Fig. 3(a). The spherical crystal spectrometer used a Quartz (1120) crystal, which has a 2d spacing of 4.912 Å, resulting in a Bragg angle $\theta_B = 49^{\circ}$ for the Lyman- α transitions for Ar¹⁷⁺. Its dispersion plane is parallel to the electron beam propagation. A charge-couple device (CCD) was used with this spectrometer for x-ray detection. For the high energy measurement taken at 84 keV, we used the von Hámos crystal spectrometer equipped with a Si (111) crystal. This crystal had a 2d spacing of 6.271 Å resulting in a Bragg angle of $\theta_B = 36.5^{\circ}$ for the Lyman- α transitions for Ar¹⁷⁺. The measured spectrum is shown in Fig. 4. The von Hámos crystal spectrometer used a position-sensitive proportional counter for x-ray detection [20]. Since both spectrometers have Bragg angles fairly close to 45°, the integrated crystal reflectivity ratio for both are expect to be small. Using **R** values tabulated by Henke et. al [18], $R_{Si111} \sim 0.15$ and $R_{Ouartz} \sim 0.14$.

III. THEORY

Using the distorted-wave code developed by Zhang, Sampson, and Clark [21], we calculated the magnetic sublevel cross sections for Lyman- α_1 , Lyman- α_2 , and the $2s_{1/2} \rightarrow 1s_{1/2}$ M1 transition, which blends with Lyman- α_2 , for both hydrogenlike Ar¹⁷⁺ and Fe²⁵⁺ at electron impact energies ranging from 5 to 25 threshold units. These theoretical results are used to estimate the polarization as well as the ratio of the effective cross sections needed in Eq. (5). The calculated magnetic sublevel cross sections are related to the polarization by the following expression,

$$P = \frac{3(\sigma_{1/2} - \sigma_{3/2})}{3\sigma_{3/2} + 5\sigma_{1/2}}$$
 (6),

where $\sigma_{1/2}$ and $\sigma_{3/2}$ denote the cross sections for electron impact excitation from the ground level to the m=1/2 and 3/2 magnetic sublevels for the $2p_{3/2} \rightarrow 1s_{1/2}$ Lyman- α_1 transition. Figures 5(a) and 5(b) show the total cross sections for Lyman- α_1 , Lyman- α_2 , and the M1 transition for both hydrogenlike Ar^{17+} and Fe^{25+} as a function of electron impact energy, respectively. Polarization values predicted by these calculations are shown in Figs. 6 and 7.

IV. RESULTS, DISCUSSION, AND CONCLUSION

Table I lists the photon counts obtained by the fitting of the spectral lines shown in Figs. 1 – 4. Each pair of Lyman- α lines was fitted with Gaussian profiles constrained to the same width. The measured intensities are then used in Eqs. (4) or (5) to infer the polarization of Lyman- α_1 . Here, particularly for hydrogenlike Fe²⁵⁺, we used the two-spectrometer method in which all of the parameters listed in Eq. (5) are determined

empirically (excluding the integrating reflectivity ratio **R**). The measured polarization values are summarized and compared to theory in Table II. The inferred value employing the one-crystal method are $P = +0.05 \pm 0.01$ at 30 keV and $P = -0.22 \pm 0.05$ at 120 keV for Lyman- α_1 in Fe²⁵⁺. These values agree well the results obtained using the two-spectrometer method, which are $P = 0.07 \pm 0.03$ and $P = -0.24 \pm 0.11$, respectively. The error bars in all cases are dominated by the statistical error, and were obtained by taking the quadrature sum of the statistical error and the error due to the uncertainty of the integrated crystal reflectivity ratios.

The four measured polarization values for the Lyman- α_1 transition in Fe²⁵⁺, using both the two-crystal spectrometer and the one-crystal technique, are plotted in Fig. 6 along with the predictions of the distorted-wave calculations. Similarly, the predicted polarization values for the Lyman- α_1 transition in Ar¹⁷⁺ are compared with the two measured values in Fig. 7. A common trend is observed in both plots: polarization values predicted by the distorted-wave calculations are systematically larger than the measurements. As noted earlier, Nakamura *et al.* reported a similar trend for Lyman- α_1 in hydrogenlike titanium [8].

We summarize the polarization measurements for Fe²⁵⁺, Ar¹⁷⁺, and Ti²¹⁺ in Fig. 8. Here the value of the electron beam for each polarization measurement is expressed in threshold units for excitation of the Lyman-alpha lines in the respective ion. Such a comparison is possible because the predictions for all three, relatively low-Z hydrogenlike ions coincide when plotted a function of threshold units. The figure clearly shows that the measured polarization values tend to be systematically smaller than the

predictions. In fact, a fit through the measured values shown as a dashed curve in Fig. 8 reveals a general reduction of the polarization compared to theory by $\Delta P \approx 0.1$.

Several possible contributions to this discrepancy with theory have been considered. An immediate concern is the unresolved magnetic dipole transition (M1) which overlaps with the unpolarized Lyman- α_2 transition used for normalization. Similarly to the Lyman- α_2 , the M1 line has a total angular momentum of 1/2, so it, too, is intrinsically unpolarized. The M1 transition contributes to the intensity of Lyman- α_2 . We must account for this contribution in order to gauge its affect on the inferred polarization of Lyman- α_1 . The branching ratio for the M1 line in Fe²⁵⁺ has been predicted to be $\sim 10\%$ [22]. The ratio is even less in the case of Ar^{17+} . Combining this with the calculated electron impact excitation cross sections for the M1 line at the relevant beam energies, we were able to correct for its intensity contribution to Lyman- α_2 . Taking this effect into account shows that the associated corrections have little effect on the inferred polarization measurements. For example, we calculate that the M1 line only contributes ~4% to the intensity of Lyman- α_2 at 30 keV and ~ 2% at 120 keV for hydrogenlike Fe²⁵⁺. For Ar¹⁷⁺, where the branching ratio leading to the production of the M1 line is yet smaller, the total contribution is negligible.

The transverse motion of the electron beam ion trap, charge exchange (CX), and possible incorrect integrated reflectivity ratio values (**R**) have also been considered as possibilities for the discrepancy. The transverse motion of the electron beam has been well studied and measured in previous experiments [5,23]. This component, if dominant, would depolarized the x-ray lines emitted from the ions trapped in EBIT, but the tangential component of the Livermore EBIT is relatively small and thus has a negligible

effect on the emitted polarized x-rays specifically at high beam energies [23]. We have also checked the effect of CX. Bare Fe and Ar ions in the electron bean ion trap can grab electrons from neutral atoms made available by the ambient gas load [24,25]. Change transfer can populate the 2p level of the hydrogenlike ions and the transferred electron can radiate to the ground state via the Lyman- α_1 transition. Since the level is not populated by the directional electron beam, the x rays emitted due to CX are not polarized. We were able to measure the x rays due to CX by switching the electron beam off, i.e, by utilizing the magnetic trapping mode [11]. The XRS microcalorimeter was synchronize with the EBIT timing pattern, and we were therefore able to distinguish between x rays emitted when the beam was either on or off. We found that the number of x rays due to CX (beam off) was less than 2% of the number of x rays produced by electron impact excitation and CX (beam on). CX is thus deemed negligible.

Since predicted integrated reflectivity ratios are used here, errors due to possible incorrect $\bf R$ values are a concern. Although calculated integrated reflectivity ratios have been shown to be quite accurate [10,18], defects unique to a given crystal my may cause $\bf R$ to deviate from the predicted value, even for ideal crystals. We have made an attempt to include the predictions of $\bf R$ in our error analysis. This was done by recalculating the polarization at θ_B +/- 5°, giving us an approximated upper and lower limit for predicted $\bf R$ values. Nakamura *et al.* [8] qualitatively investigated $\bf R$ for their crystal, and found that it matched the predicted value given by Henke *et al.* [18]. Given that we used three different crystal spectrometers in this study, we would not expect all three crystals to be defective. We conclude that predicted integrated reflectivity ratios are likely not the source of this discrepancy.

In conclusion the polarization of Lyman- α_1 of both hydrogenlike Fe²⁵⁺ and Ar¹⁷⁺ have been measured at two electron impact energies well above their respective thresholds. The measured polarization values do not agree with the predictions of distorted-wave calculations, confirming a trend set by the earlier measurements [8] of Ti²¹⁺. Additional studies both theoretical and experimental are needed to further understand the source of this discrepancy.

ACKNOWLEDGEMENT

We gratefully acknowledge the support by the Lawrence Livermore National Laboratory Research Collaborations Programs for Historically Black Colleges and Universities and Minority Institutions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48 and by Morehouse College under Contract No. DE-FG02-98ER14877. We also gratefully acknowledge support from NATO Collaborative Linkage Grant PST.CLG.97889.

REFERENCES

- [1] M.K. Inal, J. Dubau, J. Phys. B: At. Mol. Phys. **20**, 4221 (1987).
- [2] E. Haug, Sol. Phys. **71**, (1981).
- [3] J.C. Kieffer, J.P. Matte, M. Chaker, Y. Beaudoin, C.Y. Chien, S. Coe, G. Mourou, J. Dubau, and M.K. Inal, Phys. Rev. E 48, 4648 (1993).
- [4] R. Beier, C. Bachmann, and R. Burhenn, J. Phys. D 14, 643 (1981).
- [5] P. Beiersdorfer and M. Slater, Phys. Rev. E **64**, 066408 (2001).
- [6] A.S. Shlyaptseva, S.B. Hansen, V.L. Kantsyrev, B.S. Bauer, D.A. Fedin, N. Ouart,
- S.A. Kazantsev, A.G. Petrashen, and U.I. Safronova, Rev. Sci. Instrum. 72, 1241 (2001).
- [7] A.S. Shlyaptseva, V.L. Kantsyrev, N. Ouart, D. Fedin, S. Hamasha, and S. Hansen, *Proceedings of SPIE* **5196**, Aug. 3-8, 2003, San Diego, CA, USA.
- [8] N. Nakamura, D. Kato, N. Miura, T. Nakahara, and S. Ohtani, Phys. Rev. A **63**, 024501 (2001).
- [9] J.R. Henderson, P. Beiersdorfer, C.L. Bennett, S. Chantrenne, D.A. Knapp, R.E. Marrs, M.B. Schneider, K.L. Wong, G.A. Doschek, J.F. Seely, C.M. Brown, R.E. LaVilla, J. Dubau, and M.A. Levine, Phys. Rev. Lett. 65, 705 (1990).
- [10] P. Beiersdorfer, D.A. Vogel, K.J. Reed, V. Decaux, J.H. Scofield, K. Widmann, G. Hölzer, E. Förster, O. Wehrhan, D.W. Savin, and L. Schweikhard, Phys. Rev. A 53, 3974 (1996).
- [11] P. Beiersdorfer, J. Crespo López-Urrutia, V. Decaux, K. Widmann, and P. Neil, Rev. Sci. Instrum. 68, 1073 (1997).
- [12] P. Beiersdorfer, G. Brown, S. Utter, P. Neil, K.J. Reed, A.J. Smith, and R.S. Thoe, Phys. Rev. A 60, 4156 (1999).

- [13] D.L. Robbins, A. Ya. Faenov, T.A. Pikuz, H. Chen, P. Beiersdorfer, M.J. May, J. Dunn, K.J. Reed, and A.J. Smith, Phys. Rev. A 70, 022715-1 (2004).
- [14] E. Takács, E.S. Meyer, J.D. Gillaspy, J.R. Roberts, C.T. Chantler, L.T. Hudson, R.D. Deslattes, C.M. Brown, J.M. Laming, J. Dubau, and M.K. Inal, Phys. Rev. A **54**, 1342 (1996).
- [15] D.A. Knapp, R.E. Marrs, S.R. Elliott, E.W. Magee, R. Zasadzinski, Nucl. Instrum. Methods **A334**, 305 (1993).
- [16] P. Beiersdofer, R.E. Marrs, J.R. Henderson, D.A. Knapp, M.A. Levine, D.B. Platt, M.B. Schneider, D.A, Vogel, and K.L. Wong, Rev. Sci. Instrum., **61**, 2338 (1990).
- [17] D.L. Robbins, A. Ya. Faenov, T.A. Pikuz, H. Chen, P. Beiersdorfer, M.J. May, J. Dunn, and A.J. Smith, Rev. Sci. Instrum. **75**, 3717 (2004).
- [18] B.L. Henke, E.M. Gullikson, and J.C. Davis, At. Data Nucl. Data Tables **54**, 181 (1993).
- [19] F. S. Porter, G. V. Brown, K. R. Boyce, R. L. Kelley, C. A. Kilbourne, P. Beiersdorfer, H. Chen, S. Terracol, S. M. Kahn, and A. E. Szymkowiak, Rev. Sci. Instrum. **75**, 3772 (2004).
- [20] D. Thorn, P. Beiersdorfer, Review of Scientific Instruments 75, 3937 (2004)
- [21] H. L. Zhang, D. H. Sampson, and R. E. H. Clark, Phys. Rev. A 41, 198 (1990).
- [22] F. A. Parpia and W. R. Johnson, Phys. Rev. A **26**, 1142 (1982).
- [23] M. F. Gu, P. Beiersdorfer, and D. W. Savin, J. Phys. B <u>32</u>, 5371 (1999).
- [24] P. Beiersdorfer, R. E. Olson, G. V. Brown, H. Chen, C. L. Harris, P. A. Neill, L. Schweikhard, S. B. Utter, and K. Widmann, Physical Review Letters <u>85</u>, 5090 (2000).

- [25] P. Beiersdorfer, R. E. Olson, L. Schweikhard, P. Liebisch, G. V. Brown, J. Crespo López-Urrutia, C. L. Harris, P. A. Neill, S. B. Utter, and K. Widmann, P. Beiersdorfer, R. E. Olson, L. Schweikhard, P. Liebisch, G. V. Brown, J. Crespo López-Urrutia, C. L. Harris, P. A. Neill, S. B. Utter, and K. Widmann in "The Physics of Electronic and Atomic Collisions," ed. by. Y. Itikawa et al., AIP Conf. Proc. No. 500 (AIP, New York, 2000), p. 626.
- [26] B. J. Wargelin, P. Beiersdorfer, J. H. Scofield, P. A. Neill, and R. E. Olson, Astrophysical Journal 634, 687 (2005).
- [27] J. Dunn, B.K.F. Young, A.D. Conder, and R.E. Stewart, in *Solid State Sensor Arrays* and *CCD Cameras*, eds. C. N. Anagnostopolous, M. M. Bloke, and M. P. Lesser, SPIE Int. Soc. Opt. Eng. Proc. 2654, 119 (1996).

Table I. Intensities observed with the von Hámos crystal spectrometer, the XRS, and the spherical crystal spectrometer for the Lyman- α_1 and Lyman- α_2 transitions of hydrogenlike Fe²⁵⁺ and Ar¹⁷⁺.

Beam Energy	Counts ^a							
(keV)		Fe	25+	Aı	.17+			
	$I^{Lyman-lpha 1}$		$I^{Lyman-\alpha 2}$		$I^{Lyman-\alpha 1}$	$I^{Lyman-\alpha 2}$		
	Von Hámos	XRS	Von Hámos	XRS	1.	L.		
30	340	484	171	257	249 ^b	127 ^b		
84					220°	123°		
120	355	519	252	302				

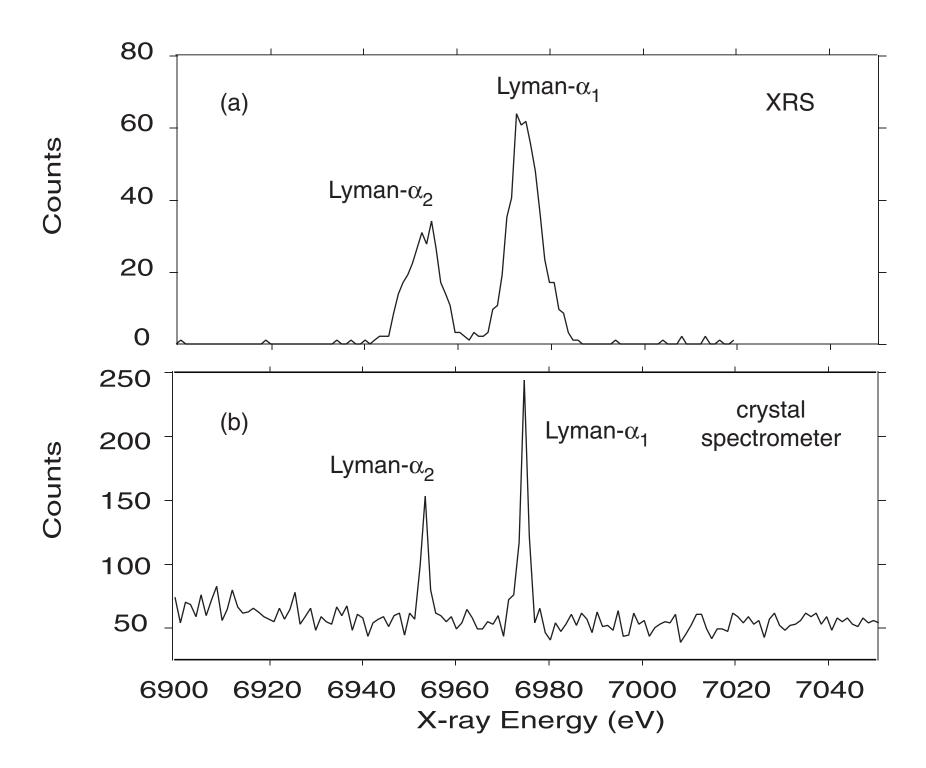
^aIntensities were obtained by fitting each line by Gaussian profiles.

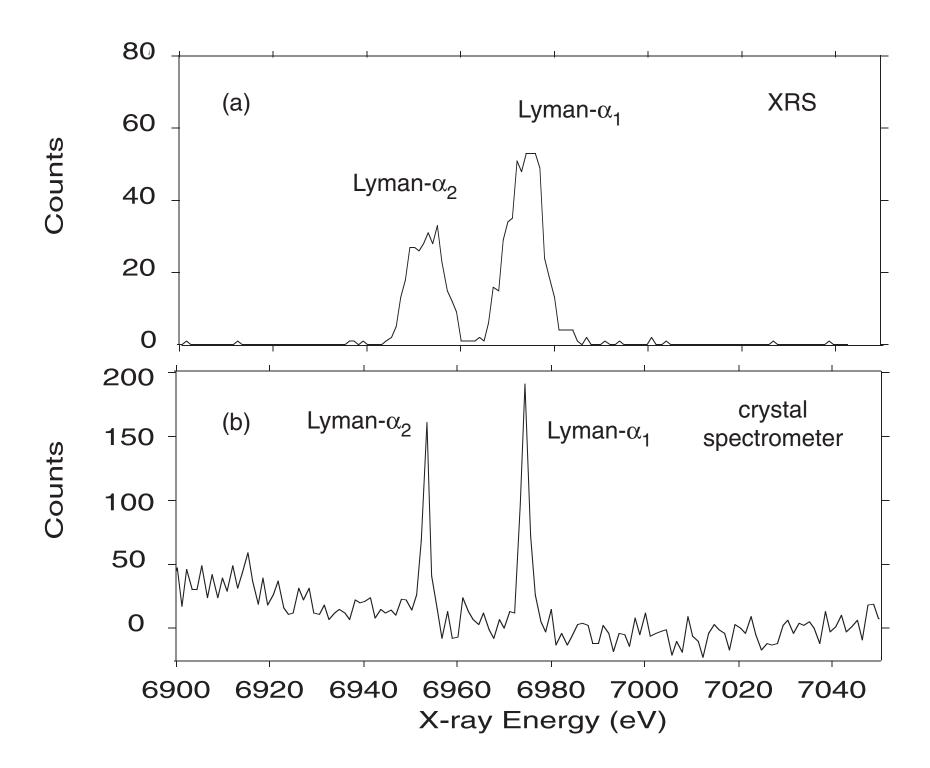
^bCounts observed with the spherical crystal spectrometer. Converted photon counts from CCD detector [120 "CCD counts" = 1 photon count (Ref. [27])].

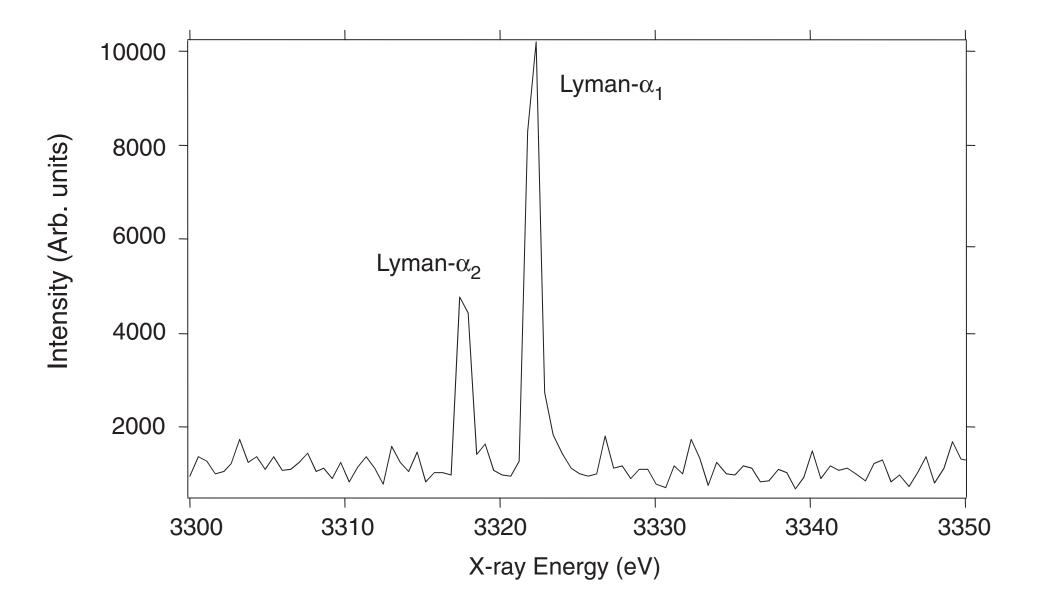
^cCounts observed using the von Hámos crystal spectrometer.

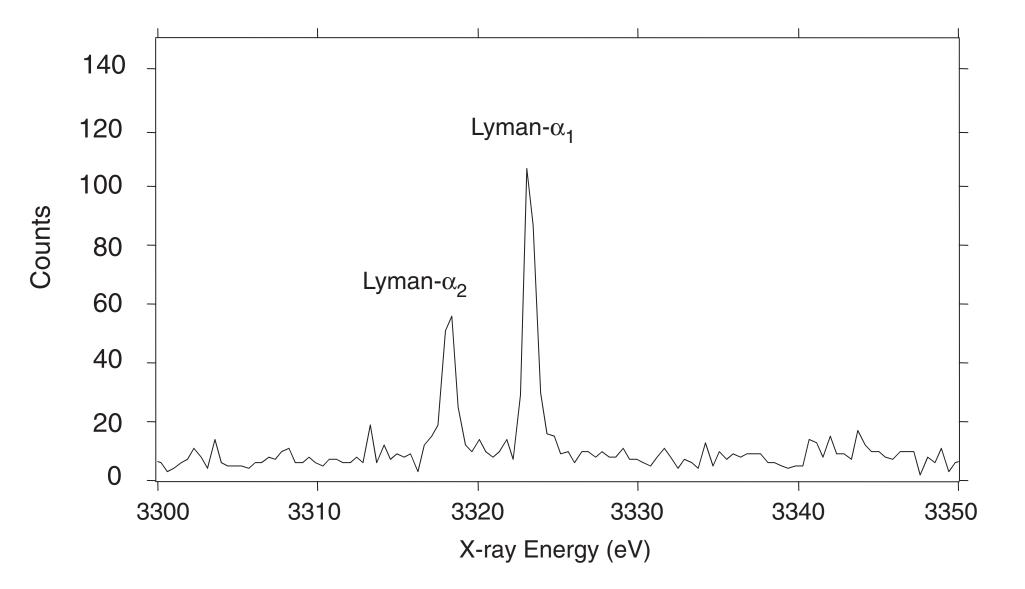
Table II. Polarization measurements for Lyman- α_1 of Fe²⁵⁺ and Ar¹⁷⁺ compared to the predictions of distorted-wave calculations.

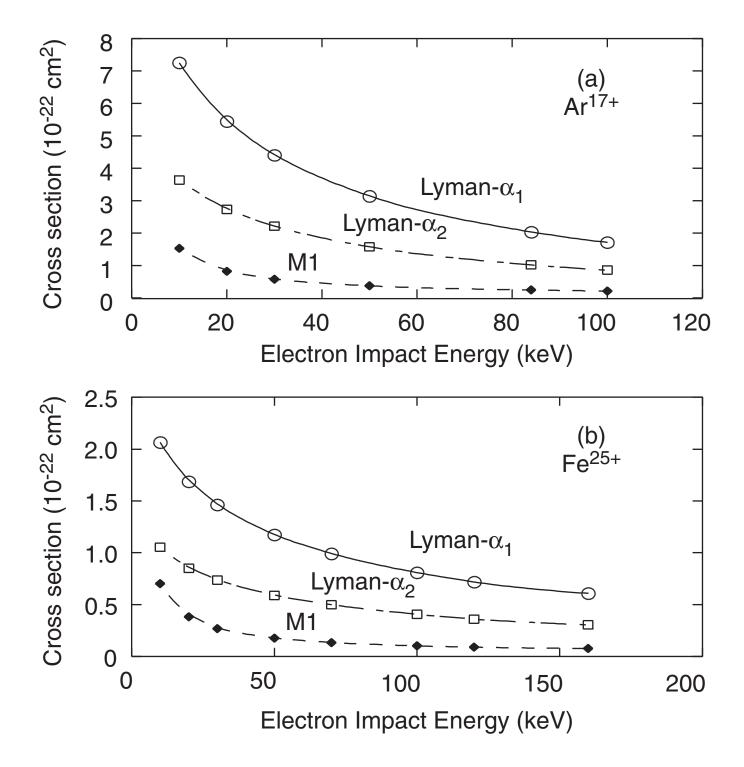
Beam Energy]	$P_{Lyman-\alpha l}(Ar^{17+})$			
(keV)	measured ^a	measured ^b	distorted- wave	measured ^b	distorted -wave
30	+0.071±0.034	+0.051±0.011	+0.194	-0.019±0.025	+0.072
84				-0.099±0.045	-0.049
120	-0.236±0.109	-0.217±0.045	+0.007		


^aPolarization measurements were obtained using the "two-crystal spectrometer method".


^bPolarization measurements were obtained using the "one-crystal method".


FIGURE CAPTIONS


- **FIG. 1.** Lyman- α emission spectra of Fe²⁵⁺ obtained with (a) the XRS microcalorimeter and (b) the von Hámos crystal spectrometer. Spectra were taken concurrently at an electron beam energy of 30 keV.
- **FIG. 2**. Lyman- α emission spectra of Fe²⁵⁺ obtained with (a) the XRS microcalorimeter and (b) the von Hámos crystal spectrometer. Spectra were taken concurrently at an electron beam energy of 120 keV.
- **FIG. 3.** Lyman- α emission spectrum of Ar¹⁷⁺ obtained with the spherical crystal spectrometer at an electron beam energy of 30 keV.
- **FIG. 4**. Lyman-α emission spectra of Ar¹⁷⁺ obtained with the von Hámos crystal spectrometer at an electron beam energy of 84 keV.
- **FIG. 5**. Total excitation cross sections predicted by distorted-wave calculations for the Lyman- α_1 , Lyman- α_2 , and M1 transition due to electron impact excitation for (a) hydrogenlike Ar¹⁷⁺and (b) hydrogenlike Fe²⁵⁺.
- **FIG. 6.** Measured polarization of the Lyman- α_1 line of Fe²⁵⁺ compared to the predictions from distorted-wave calculations. Results obtained with the one-crystal method are shown as open triangles; results obtained with the two-spectrometer technique are given as open circles.
- **FIG. 7**. Measured polarization of the Lyman- α_1 emission line of Ar¹⁷⁺ compared to the predictions from distorted-wave calculations.
- **FIG. 8**. Measured polarization of the Lyman- α_1 emission line of Fe²⁵⁺, Ar²⁵⁺, and Ti²¹⁺ compared to the predictions from distorted-wave calculations (solid curve). All electron-


beam energies values are plotted in threshold units (X). The dotted curve represents the a fit of the measured polarization values.

